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Previous: how search engines work
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Search engine: issues

Scalability (crawling, indexing, searching, ranking)

Relevance (query to document match)

Static ranking (content quality)

Incentives for cheating ($)

Web Spam
Detection

R. Baeza-Yates

Web Spam

Web Spam
Detection

A Reference
Collection

Web Links

Topological Web
Spam

Counting of
Supporters

Content-based
Spam detection

Web Topology

Conclusions

This is a talk about academic research!

Tools for dealing with Web Spam
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The Web

“The sum of all human knowledge plus porn” – Robert Gilbert

Graphic: www.milliondollarhomepage.com
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Adversarial IR Issues on the Web

Link spam

Content spam

Cloaking

Comment/forum/wiki spam

Spam-oriented blogging

Click fraud ×2

Reverse engineering of ranking algorithms

Web content filtering

Advertisement blocking

Stealth crawling

Malicious tagging

. . . more?
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Opportunities for Web spam

X Spamdexing

Keyword stuffing
Link farms
Spam blogs (splogs)
Cloaking

Adversarial relationship

Every undeserved gain in ranking for a spammer, is a loss of
precision for the search engine.
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Näıve Web Spam
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Hidden text
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Made for Advertising
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Search engine?
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Fake search engine
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“Normal” content in link farms
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Cloaking
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Redirection
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Redirects using Javascript

Simple redirect

<script>
document.location="http://www.topsearch10.com/";
</script>

“Hidden” redirect
<script>
var1=24; var2=var1;
if(var1==var2) {
document.location="http://www.topsearch10.com/";

}
</script>



Web Spam
Detection

R. Baeza-Yates

Web Spam

Web Spam
Detection

A Reference
Collection

Web Links

Topological Web
Spam

Counting of
Supporters

Content-based
Spam detection

Web Topology

Conclusions

Problem: obfuscated code

Obfuscated redirect
<script>
var a1="win",a2="dow",a3="loca",a4="tion.",
a5="replace",a6="(’http://www.top10search.com/’)";
var i,str="";
for(i=1;i<=6;i++)
{
str += eval("a"+i);

}
eval(str);
</script>
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Problem: really obfuscated code

Encoded javascript

<script>
var s = "%5CBE0D%5C%05GDHJ BDE%16...%04%0E";
var e = ’’, i;
eval(unescape(’s%eDunescape%28s%29%3Bfor...%3B’));
</script>

More examples: [Chellapilla and Maykov, 2007]
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Machine Learning
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Training of a Decision Tree
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Decision Tree (error = 15%)
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Decision Tree (error = 15% → 12%)
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Machine Learning (cont.)
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Feature Extraction
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Challenges: Machine Learning

Machine Learning Challenges:

Instances are not really independent (graph)

Learning with few examples

Scalability
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Challenges: Information Retrieval

Information Retrieval Challenges:

Feature extraction: which features?

Feature aggregation: page/host/domain

Feature propagation (graph)

Recall/precision tradeoffs

Scalability
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Data is really important

It is dangerous for a search engine to provide labelled
data for this

Even if they do, it would never reflect a consensus
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Assembling Process

Crawling of base data

Elaboration of the guidelines and classification interface

Labeling

Post-processing
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Crawling of base data

U.K. collection

77.9 M pages downloaded from the .UK domain in May 2006
(LAW, University of Milan)

Large seed of about 150,000 .uk hosts

11,400 hosts

8 levels depth, with <=50,000 pages per host
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Classification interface
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Labeling process

We asked 20+ volunteers to classify entire hosts

Asked to classify normal / borderline / spam

Do they agree? Mostly . . .
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Agreement



Web Spam
Detection

R. Baeza-Yates

Web Spam

Web Spam
Detection

A Reference
Collection

Web Links

Topological Web
Spam

Counting of
Supporters

Content-based
Spam detection

Web Topology

Conclusions

Results

Labels
Label Frequency Percentage

Normal 4,046 61.75%
Borderline 709 10.82%

Spam 1,447 22.08%
Can not classify 350 5.34%

Agreement
Category Kappa Interpretation

normal 0.62 Substantial agreement
spam 0.63 Substantial agreement
borderline 0.11 Slight agreement

global 0.56 Moderate agreement
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Result: first public Web Spam collection

Public spam collection

Labels for 6,552 hosts
2,725 hosts classified by at least 2 humans
3,106 automatically considered normal (.ac.uk,
.sch.uk, .gov.uk, .mod.uk, .nhs.uk or .police.uk)
http://www.yr-bcn.es/webspam/

Upcoming Web Spam challenge

Track I: Information retrieval + Machine learning
Track II: Machine learning
http://webspam.lip6.fr/

AIRWeb 2007 Workshop (challenge results available)

Regular and short papers
Track I of the Web Spam Challenge
http://airweb.cse.lehigh.edu/2007/
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AIRWeb 2007 in Banff, Canada
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Scale-free networks



Web Spam
Detection

R. Baeza-Yates

Web Spam

Web Spam
Detection

A Reference
Collection

Web Links

Topological Web
Spam

Counting of
Supporters

Content-based
Spam detection

Web Topology

Conclusions

How to find meaningful patterns?

Several levels of analysis:

Macroscopic view: overall structure

Microscopic view: nodes

Mesoscopic view: regions
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Macroscopic view, e.g. Bow-tie

[Broder et al., 2000]
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Macroscopic view, e.g. Bow-tie, migration

[Baeza-Yates and Poblete, 2006]
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Macroscopic view, e.g. Jellyfish

[Tauro et al., 2001] - Internet Autonomous Systems (AS)
Topology
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Macroscopic view, e.g. Jellyfish
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Microscopic view, e.g. Degree

[Barabási, 2002] and others
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Microscopic view, e.g. Degree

Greece Chile

Spain Korea

[Baeza-Yates et al., 2006b] - compares this distribution in 8
countries . . . guess what is the result?
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Mesoscopic view, e.g. Hop-plot
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Mesoscopic view, e.g. Hop-plot
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Mesoscopic view, e.g. Hop-plot
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[Baeza-Yates et al., 2006a]
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Topological spam: link farms

Single-level farms can be detected by searching groups of
nodes sharing their out-links [Gibson et al., 2005]
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Motivation

Fetterly [Fetterly et al., 2004] hypothesized that studying the
distribution of statistics about pages could be a good way of
detecting spam pages:

“in a number of these distributions, outlier values are
associated with web spam”
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Handling large graphs

For large graphs, random access is not possible.

Large graphs do not fit in main memory

Streaming model of computation
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Semi-streaming model

Memory size enough to hold some data per-node

Disk size enough to hold some data per-edge

A small number of passes over the data
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Restriction

Semi-streaming model: graph on disk

1: for node : 1 . . . N do
2: INITIALIZE-MEM(node)
3: end for
4: for distance : 1 . . . d do {Iteration step}
5: for src : 1 . . . N do {Follow links in the graph}
6: for all links from src to dest do
7: COMPUTE(src,dest)
8: end for
9: end for

10: NORMALIZE
11: end for
12: POST-PROCESS
13: return Something
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Link-Based Features

Degree-related measures

PageRank

TrustRank [Gyöngyi et al., 2004]

Truncated PageRank [Becchetti et al., 2006]

Estimation of supporters [Becchetti et al., 2006]

140 features per host (2 pages per host)



Web Spam
Detection

R. Baeza-Yates

Web Spam

Web Spam
Detection

A Reference
Collection

Web Links

Topological Web
Spam

Counting of
Supporters

Content-based
Spam detection

Web Topology

Conclusions

Degree-Based

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1968753460609107764252125899138032376184

Normal
Spam

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

22009.92686.5327.940.04.90.60.10.00.00.0

Normal
Spam

Web Spam
Detection

R. Baeza-Yates

Web Spam

Web Spam
Detection

A Reference
Collection

Web Links

Topological Web
Spam

Counting of
Supporters

Content-based
Spam detection

Web Topology

Conclusions

TrustRank Idea
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TrustRank / PageRank
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High and low-ranked pages are different

1 5 10 15 20
0

2

4

6

8

10

12

x 10
4

Distance

N
um

be
r o

f N
od

es

 

 

Top 0%−10%
Top 40%−50%
Top 60%−70%

Areas below the curves are equal if we are in the same
strongly-connected component

Web Spam
Detection

R. Baeza-Yates

Web Spam

Web Spam
Detection

A Reference
Collection

Web Links

Topological Web
Spam

Counting of
Supporters

Content-based
Spam detection

Web Topology

Conclusions

Probabilistic counting
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[Becchetti et al., 2006] shows an improvement of ANF
algorithm [Palmer et al., 2002] based on probabilistic
counting [Flajolet and Martin, 1985]
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Bottleneck number

bd(x) = minj≤d{|Nj(x)|/|Nj−1(x)|}. Minimum rate of growth
of the neighbors of x up to a certain distance. We expect that
spam pages form clusters that are somehow isolated from the
rest of the Web graph and they have smaller bottleneck
numbers than non-spam pages.
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Content-Based Features

Most of the features reported in [Ntoulas et al., 2006]

Number of word in the page and title

Average word length

Fraction of anchor text

Fraction of visible text

Compression rate

Corpus precision and corpus recall

Query precision and query recall

Independent trigram likelihood

Entropy of trigrams

96 features per host
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Average word length
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Figure: Histogram of the average word length in non-spam vs.
spam pages for k = 500.
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Corpus precision
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Figure: Histogram of the corpus precision in non-spam vs. spam
pages.
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Query precision
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Figure: Histogram of the query precision in non-spam vs. spam
pages for k = 500.
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General hypothesis

Pages topologically close to each other are more likely
to have the same label (spam/nonspam) than random
pairs of pages.

Pages linked together are more likely to be on the same topic
than random pairs of pages [Davison, 2000]



Web Spam
Detection

R. Baeza-Yates

Web Spam

Web Spam
Detection

A Reference
Collection

Web Links

Topological Web
Spam

Counting of
Supporters

Content-based
Spam detection

Web Topology

Conclusions

Web Spam
Detection

R. Baeza-Yates

Web Spam

Web Spam
Detection

A Reference
Collection

Web Links

Topological Web
Spam

Counting of
Supporters

Content-based
Spam detection

Web Topology

Conclusions

Topological dependencies: in-links

Histogram of fraction of spam hosts in the in-links

0 = no in-link comes from spam hosts

1 = all of the in-links come from spam hosts
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Topological dependencies: out-links

Histogram of fraction of spam hosts in the out-links

0 = none of the out-links points to spam hosts

1 = all of the out-links point to spam hosts
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Idea 1: Clustering

Classify, then cluster hosts, then assign the same label to all
hosts in the same cluster by majority voting

Baseline Clustering

Without bagging

True positive rate 75.6% 74.5%
False positive rate 8.5% 6.8%

F-Measure 0.646 0.673
With bagging

True positive rate 78.7% 76.9%
False positive rate 5.7% 5.0%

F-Measure 0.723 0.728

V Reduces error rate
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Idea 2: Propagate the label

Classify, then interpret “spamicity” as a probability, then do a
random walk with restart from those nodes

Baseline Fwds. Backwds. Both

Classifier without bagging

True positive rate 75.6% 70.9% 69.4% 71.4%
False positive rate 8.5% 6.1% 5.8% 5.8%

F-Measure 0.646 0.665 0.664 0.676
Classifier with bagging

True positive rate 78.7% 76.5% 75.0% 75.2%
False positive rate 5.7% 5.4% 4.3% 4.7%

F-Measure 0.723 0.716 0.733 0.724
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Idea 3: Stacked graphical learning

Classify, then add the average predicted “spamicity” of
neighbors as a new feature for each node, then classify
again[Cohen and Kou, 2006]

Avg. Avg. Avg.
Baseline of in of out of both

True positive rate 78.7% 84.4% 78.3% 85.2%
False positive rate 5.7% 6.7% 4.8% 6.1%

F-Measure 0.723 0.733 0.742 0.750

V Increases detection rate
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Idea 3: Stacked graphical learning x2

And repeat ...

Baseline First pass Second pass

True positive rate 78.7% 85.2% 88.4%
False positive rate 5.7% 6.1% 6.3%

F-Measure 0.723 0.750 0.763

V Significant improvement over the baseline
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Concluding remarks

V The UK-2006-05 dataset is “harder” than previous
datasets

V Considering content-based and link-based attributes
improves the accuracy

V Considering the dependencies improves the accuracy
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Thank you!
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